Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5649, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454106

RESUMO

The relationship between energy reserves of cold-water corals (CWCs) and their physiological performance remains largely unknown. In addition, it is poorly understood how the energy allocation to different metabolic processes might change with projected decreasing food supply to the deep sea in the future. This study explores the temporal and spatial variations of total energy reserves (proteins, carbohydrates and lipids) of the CWC Desmophyllum dianthus and their correlation with its calcification rate. We took advantage of distinct horizontal and vertical physico-chemical gradients in Comau Fjord (Chile) and examined the changes in energy reserves over one year in an in situ reciprocal transplantation experiment (20 m vs. 300 m and fjord head vs. mouth). Total energy reserves correlated positively with calcification rates. The fast-growing deep corals had higher and less variable energy reserves, while the slower-growing shallow corals showed pronounced seasonal changes in energy reserves. Novel deep corals (transplanted from shallow) were able to quickly increase both their calcification rates and energy reserves to similar levels as native deep corals. Our study shows the importance of energy reserves in sustaining CWC growth in spite of aragonite undersaturated conditions (deep corals) in the present, and potentially also future ocean.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Estuários , Calcificação Fisiológica/fisiologia , Água , Carbonato de Cálcio , Recifes de Corais
2.
Biol Bull ; 244(1): 9-24, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37167618

RESUMO

AbstractMembers of the sea anemone genus Metridium are abundant in temperate rocky habitats and fouling communities. Their biogeographic history is expected to reflect changes in currents and habitats that have influenced benthic communities, such as the climate-influenced changes that occurred during the Last Glacial Maximum. More recently, however, anthropogenic influences such as shipping transportation and the creation of artificial habitat have altered and affected the composition of modern-day marine communities. Here we use sequence-capture data to examine the genetic structure of Metridium across its shallow-water distribution to (1) evaluate species boundaries within Metridium, (2) elucidate the dispersal history of Metridium between and among oceans, and (3) assess the influence of anthropogenic movement on modern-day populations. We find strong evidence for two species within Metridium: M. farcimen and M. senile. Dispersal from the Pacific to the Atlantic included a subsequent isolation of a small population in or above the Bering Sea, which has presumably moved southward. Within the native range of M. senile, admixture is prevalent even between oceans as a result of anthropogenic activities. The nonnative populations in Chile and the Falkland Islands came from at least two distinct introduction events originating from both coasts of the United States in the North Pacific and North Atlantic Oceans. Hybridization between M. senile and M. farcimen is documented as occurring in anthropogenically influenced habitats. The heavy influence from anthropogenic activities will continue to impact our understanding of marine organisms, particularly within the native range and for those that are easily transported across long distances.


Assuntos
Anêmonas-do-Mar , Animais , Oceanos e Mares , Ecossistema
3.
Sci Rep ; 12(1): 14894, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050435

RESUMO

The Chilean Patagonia is a complex puzzle of numerous fjords, channels, bays, estuaries, and islands. The largest part of it is very remote, hampering the generation of scientific knowledge and effective management planning that could balance conservation of the marine resources with the increasing development of aquaculture activities. The present study focuses on the deep-water emergent cold-water coral Desmophyllum dianthus, dwelling in Chilean Patagonia, with the aim to illustrate its population genetic structure, demography and adaptation of the species along this coast. Microsatellite loci analysis included D. dianthus individuals from twelve sampling localities along bathymetric and oceanographic gradients from the latitude 40°S to 48°S. The results showed a lack of genetic structure with an asymmetric dispersion of individuals, and relevant heterozygosity deficiency in some populations. This study also analyses the natural and human impacts affecting the region (e.g., climate change, increasing salmon farming activities), and stresses the importance of including genetic information in the process of management and conservation of marine resources. In particular, the relevance of using interdisciplinary approaches to fill the gaps in scientific knowledge especially in remote and pristine areas of western Patagonia. Therefore, information on genetic spatial distribution of marine fauna could become pivotal to develop a holistic ecosystem-based approach for marine spatial planning.


Assuntos
Antozoários , Animais , Antozoários/genética , Baías , Conservação dos Recursos Naturais , Ecossistema , Variação Genética , Humanos , Água
4.
Global Biogeochem Cycles ; 34(12): e2020GB006611, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33519063

RESUMO

Glaciated environments have been highlighted as important sources of bioavailable nutrients, with inputs of glacial meltwater potentially influencing productivity in downstream ecosystems. However, it is currently unclear how riverine nutrient concentrations vary across a spectrum of glacial cover, making it challenging to accurately predict how terrestrial fluxes will change with continued glacial retreat. Using 40 rivers in Chilean Patagonia as a unique natural laboratory, we investigate how glacial cover affects riverine Si and Fe concentrations, and infer how exports of these bioessential nutrients may change in the future. Dissolved Si (as silicic acid) and soluble Fe (<0.02 µm) concentrations were relatively low in glacier-fed rivers, whereas concentrations of colloidal-nanoparticulate (0.02-0.45 µm) Si and Fe increased significantly as a function of glacial cover. These colloidal-nanoparticulate phases were predominately composed of aluminosilicates and Fe-oxyhydroxides, highlighting the need for size-fractionated analyses and further research to quantify the lability of colloidal-nanoparticulate species. We also demonstrate the importance of reactive particulate (>0.45 µm) phases of both Si and Fe, which are not typically accounted for in terrestrial nutrient budgets but can dominate riverine exports. Dissolved Si and soluble Fe yield estimates showed no trend with glacial cover, suggesting no significant change in total exports with continued glacial retreat. However, yields of colloidal-nanoparticulate and reactive sediment-bound Si and Fe were an order of magnitude greater in highly glaciated catchments and showed significant positive correlations with glacial cover. As such, regional-scale exports of these phases are likely to decrease as glacial cover disappears across Chilean Patagonia, with potential implications for downstream ecosystems.

6.
PLoS One ; 14(10): e0222498, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31622348

RESUMO

We test the ability of Very High Resolution satellite (VHR) imagery to detect stranded whales using both manual and automated methods. We use the 2015 mass mortality event in the Gulf of Penas locality, central Patagonia, Chile, as an initial case study. This event was the largest known mass mortality of baleen whales, with at least 343 whales, mainly sei whales (Balaenoptera borealis), documented as stranding. However, even with such a large number of whales, due to the remote location of the gulf the strandings went unrecorded for several weeks. Aerial and boat surveys of the area were conducted two to four months after the mortality event. In this study we use 50cm resolution WorldView2 imagery to identify and count strandings from two archival images acquired just after the stranding event and two months before the aerial and ground surveys, and to test manual and automated methods of detecting stranded whales. Our findings show that whales are easily detected manually in the images but due to the heterogeneous colouration of decomposing whales, spectral indices are unsuitable for automatic detection. Our satellite counts suggest that, at the time the satellite images were taken, more whales were stranded than recorded in the aerial survey, possibly due to the non-comprehensive coverage of the aerial survey or movement of the carcases between survey acquisition. With even higher resolution imagery now available, satellite imagery may be a cost effective alternative to aerial surveys for future assessment of the extent of mass whale stranding events, especially in remote and inaccessible areas.


Assuntos
Balaenoptera/fisiologia , Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Animais , Chile , Humanos , Mortalidade , Imagens de Satélites/métodos
7.
Sci Rep ; 9(1): 598, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679565

RESUMO

The fibrous calcite layer of modern brachiopod shells is a hybrid composite material and forms a substantial part of the hard tissue. We investigated how cells of the outer mantle epithelium (OME) secrete calcite material and generate the characteristic fibre morphology and composite microstructure of the shell. We employed AFM, FE-SEM, and TEM imaging of embedded/etched, chemically fixed/decalcified and high-pressure frozen/freeze substituted samples. Calcite fibres are secreted by outer mantle epithelium (OME) cells. Biometric analysis of TEM micrographs indicates that about 50% of these cells are attached via hemidesmosomes to an extracellular organic membrane present at the proximal, convex surface of the fibres. At these sites, mineral secretion is not active. Instead, ion transport from OME cells to developing fibres occurs at regions of closest contact between cells and fibres, however only at sites where the extracellular membrane at the proximal fibre surface is not developed yet. Fibre formation requires the cooperation of several adjacent OME cells. It is a spatially and temporally changing process comprising of detachment of OME cells from the extracellular organic membrane, mineral secretion at detachment sites, termination of secretion with formation of the extracellular organic membrane, and attachment of cells via hemidesmosomes to this membrane.


Assuntos
Exoesqueleto/química , Carbonato de Cálcio/química , Invertebrados/metabolismo , Exoesqueleto/ultraestrutura , Animais , Carbonato de Cálcio/metabolismo , Desmossomos/metabolismo , Epitélio/metabolismo , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
8.
Mol Phylogenet Evol ; 127: 217-228, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29800649

RESUMO

The phylogenetic resolution provided by genome-wide data has demonstrated the usefulness of RAD sequencing to tackle long-standing taxonomic questions. Cnidarians have recently become a model group in this regard, yet species delimitation analyses have been mostly performed in octocorals. In this study, we used RAD sequencing to test the species hypotheses in a wide-spread complex of sea anemones (genus Anthothoe), contrasting this new line of evidence with their current classification. The alternative hypotheses were tested using a Bayes Factors delimitation method, and the most probable species tree was then evaluated under different biogeographic scenarios. Our results decisively rejected the current morphology-informed delimitation model and infer the presence of several cryptic species associated with distinct marine ecoregions. This spatial pattern was remarkably consistent throughout the study, highlighting the role of geographic distribution as a powerful explanatory variable of lineages diversification. The southern Gondwana pattern with episodic, jump dispersal events is the biogeographic historical representation that best fits the Anthothoe species tree. The high population differentiation possibly amplified by the occurrence of asexual reproduction makes it difficult to identify genes responsible for local adaptation, however, these seem to be mainly associated with cellular and metabolic processes. We propose a new set of species hypotheses for the Southern Hemispheric Anthothoe clade, based on the pronounced genomic divergence observed among lineages. Although the link between the genetic and phenotypic differentiation remains elusive, newer sequencing technologies are bringing us closer to understanding the evolution of sea anemone diversity and, therefore, how to appropriately classify them.


Assuntos
Variação Genética , Genoma , Filogeografia , Anêmonas-do-Mar/classificação , Anêmonas-do-Mar/genética , Animais , Teorema de Bayes , Loci Gênicos , Filogenia , Especificidade da Espécie
9.
BMC Evol Biol ; 16(1): 258, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903261

RESUMO

BACKGROUND: DNA barcoding has demonstrated that many discrete phenotypes are in fact genetically distinct (pseudo)cryptic species. Genetically identical, isogenic individuals, however, can also express similarly different phenotypes in response to a trigger condition, e.g. in the environment. This alternative explanation to cryptic speciation often remains untested because it requires considerable effort to reject the hypothesis that the observed underlying genetic homogeneity of the different phenotypes may be trivially caused by too slowly evolving molecular markers. The widespread squat lobster Munida gregaria comprises two discrete ecotypes, gregaria s. str. and subrugosa, which were long regarded as different species due to marked differences in morphological, ecological and behavioral traits. We studied the morphometry and genetics of M. gregaria s. l. and tested (1) whether the phenotypic differences remain stable after continental-scale sampling and inclusion of different life stages, (2) and whether each phenotype is underpinned by a specific genotype. RESULTS: A total number of 219 gregaria s. str. and subrugosa individuals from 25 stations encompassing almost entire range in South America were included in morphological and genetic analyses using nine unlinked hypervariable microsatellites and new COI sequences. Results from the PCA and using discriminant functions demonstrated that the morphology of the two forms remains discrete. The mitochondrial data showed a shallow, star-like haplotype network and complete overlap of genetic distances within and among ecotypes. Coalescent-based species delimitation methods, PTP and GMYC, coherently suggested that haplotypes of both ecotypes forms a single species. Although all microsatellite markers possess sufficient genetic variation, AMOVA, PCoA and Bayesian clustering approaches revealed no genetic clusters corresponding to ecotypes or geographic units across the entire South-American distribution. No evidence of isolation-by-distance could be detected for this species in South America. CONCLUSIONS: Despite their pronounced bimodal morphologies and different lifestyles, the gregaria s. str. and subrugosa ecotypes form a single, dimorphic species M. gregaria s. l.. Based on adequate geographic coverage and multiple independent polymorphic loci, there is no indication that each phenotype may have a unique genetic basis, leaving phenotypic plasticity or localized genomic islands of speciation as possible explanations.


Assuntos
Anomuros/genética , Variação Genética , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Ecótipo , Feminino , Genótipo , Haplótipos , Masculino , Repetições de Microssatélites , Fenótipo , Filogenia , América do Sul
10.
Genome Biol Evol ; 7(5): 1349-62, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25912046

RESUMO

Brachiopods are a lineage of invertebrates well known for the breadth and depth of their fossil record. Although the quality of this fossil record attracts the attention of paleontologists, geochemists, and paleoclimatologists, modern day brachiopods are also of interest to evolutionary biologists due to their potential to address a variety of questions ranging from developmental biology to biomineralization. The brachiopod shell is a composite material primarily composed of either calcite or calcium phosphate in close association with proteins and polysaccharides which give these composite structures their material properties. The information content of these biomolecules, sequestered within the shell during its construction, has the potential to inform hypotheses focused on describing how brachiopod shell formation evolved. Here, using high throughput proteomic approaches and next generation sequencing, we have surveyed and characterized the first shell-proteome and shell-forming transcriptome of any brachiopod, the South American Magellania venosa (Rhynchonelliformea: Terebratulida). We find that the seven most abundant proteins present in the shell are unique to M. venosa, but that these proteins display biochemical features found in other metazoan biomineralization proteins. We can also detect some M. venosa proteins that display significant sequence similarity to other metazoan biomineralization proteins, suggesting that some elements of the brachiopod shell-forming proteome are deeply evolutionarily conserved. We also employed a variety of preparation methods to isolate shell proteins and find that in comparison to the shells of other spiralian invertebrates (such as mollusks) the shell ultrastructure of M. venosa may explain the effects these preparation strategies have on our results.


Assuntos
Exoesqueleto/química , Evolução Biológica , Calcificação Fisiológica , Invertebrados/química , Proteoma/análise , Exoesqueleto/metabolismo , Exoesqueleto/ultraestrutura , Animais , Invertebrados/genética , Invertebrados/metabolismo , Invertebrados/ultraestrutura , Transcriptoma
11.
PLoS One ; 6(5): e19004, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21611159

RESUMO

Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons) rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial control region (MtC) to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow <600 m, mid 1000-1500 m, deep >1500 m) even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations.


Assuntos
Antozoários/crescimento & desenvolvimento , Antozoários/genética , Meio Ambiente , Animais , Antozoários/anatomia & histologia , Austrália , Sequência de Bases , Osso e Ossos/anatomia & histologia , Chile , Análise Discriminante , Fluxo Gênico/genética , Variação Genética , Geografia , Haplótipos/genética , Dados de Sequência Molecular , Nova Zelândia , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...